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1. Introduction

In [1, 2], it was suggested that the 1/2 BPS sector of N = 4 SYM is described as a matrix

quantum mechanics in a harmonic potential. It is well-known that the Hilbert space of

this system is represented by a free fermion system. In a recent paper [3], the gravity

dual of these 1/2 BPS states are constructed and they are indeed characterized by the

incompressible Fermi fluid in a two-dimensional plane.

The 1/2 BPS operators are given by the product of traces of the scalar field Z =

X1 + iX2 in N = 4 SYM. Their correlation functions do not receive quantum corrections,

so they are given by

〈
k∏

i=1

Tr ZJi(x)

l∏

j=1

Tr Z
Kj (y)

〉

N=4 SYM

=
G{Ji}{Kj}

|x − y|2J
(1.1)

where J is the total U(1) charge

J =

k∑

i=1

Ji =

l∑

j=1

Kj , (1.2)

and it is equal to the conformal dimension of the 1/2 BPS operator. The non-trivial

information is solely contained in the numerical factor G{Ji}{Kj} in (1.1). It was shown

in [4, 5] that this factor is written as a complex gaussian matrix integral

G{Ji}{Kj} =

∫
[dZdZ]e−Tr(ZZ)

k∏

i=1

Tr ZJi

l∏

j=1

Tr Z
Kj . (1.3)

It is further argued that in the BMN limit [6]

N,J → ∞ with g2 =
J2

N
fixed (1.4)

– 1 –



J
H
E
P
0
1
(
2
0
0
6
)
0
2
1

the non-planar diagrams survive in the computation of G{Ji}{Kj} and it becomes a non-

trivial function of g2.

In this short note, we try to connect the above two facts. We argue that the BMN

limit of G{Ji}{Kj} can be computed from the free fermion picture. This paper is organized

as follows. In section 2, we review the Schur polynomial as the orthogonal basis of 1/2 BPS

operators and their relation to the free fermions. In section 3, we propose that the BMN

limit of two-point function can be reproduced from the Das-Jevicki-Sakita hamiltonian.

section 4 is discussions.

2. Schur polynomial and free fermion

In this section, we review the relation between 1/2 BPS operators and the Schur polyno-

mials [1, 2]. To write down the 1/2 BPS operators, it is useful to introduce the free boson

αn obeying the standard commutation relation

[αn, αm] = nδn+m,0. (2.1)

Then we introduce the coherent state

|Z〉 = exp

(
∞∑

n=1

1

n
TrZnα−n

)
|0〉 (2.2)

which satisfies

αJ |Z〉 = Tr ZJ |Z〉. (2.3)

In other words, the oscillator αJ corresponds to a single trace operator Tr ZJ . In

particular the mode number of oscillator corresponds to the length of the trace, which in

turn is identified as the length of string via the spin chain picture. More generally, the

multi-trace operators correspond to the product of boson oscillators

k∏

i=1

αJi
|Z〉 =

k∏

i=1

Tr ZJi|Z〉. (2.4)

The basis of operators (2.4) is not diagonal with respect to the two-point function.

The diagonal basis is obtained by fermionizing the boson αn

αn =
∑

r∈Z+ 1

2

cn−rbr (2.5)

where br and cr obey the anti-commutation relation

{cr, bs} = δr+s,0. (2.6)

For a given Young diagram R, we introduce the state 〈R| as

〈R| = 〈0|
s∏

i=1

chi−i+1/2

s∏

j=1

bvj−j+1/2 (2.7)
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c

b

Figure 1: Young Diagram and Fermions. The diagram is split into two parts by the diagonal

line (dashed line in the figure). The mode number r of cr and br corresponds to the (number of

boxes)+1/2 in the direction shown by the arrows. The number of boxes along the diagonal is s.

(s = 3 in this figure.)

where hi are the row-lengths and vj are the column-lengths, and s is the number of boxes

along the diagonal. For example, the diagram in the figure 1 corresponds to the state
〈 ∣∣∣ = 〈0|c9/2c3/2c1/2b7/2b3/2b1/2. (2.8)

In terms of the state 〈R| in (2.7), the Schur polynomial is defined by

〈R|Z〉 = SR(Z). (2.9)

This basis is diagonal with respect to the gaussian measure for the N × N complex

matrix Z ∫
[dZdZ]e−Tr(ZZ)SR(Z)SR′(Z) = NRδR,R′ . (2.10)

For instance, at the level L0 = 2 there are two states

〈 | = 〈0|c3/2b1/2, 〈 | = 〈0|c1/2b3/2 (2.11)

and the corresponding Schur polynomial is given by

〈 |Z〉 =
1

2

[
Tr Z2 + (Tr Z)2

]
, 〈 |Z〉 =

1

2

[
TrZ2 − (Tr Z)2

]
. (2.12)

In the computation of overlap integral (2.10), the following kernel naturally appears

e
1

2N
Vint ≡

∫
[dZdZ]e−Tr(ZZ)|Z〉〈Z|. (2.13)

Once we know the “interaction vertex” Vint defined by (2.13), it is straightforward to

compute the overlap integral in the free boson picture

〈0|
k∏

i=1

αJi
e

1

2N
Vint

l∏

j=1

α−Kj
|0〉 =

∫
[dZdZ]e−Tr(ZZ)

k∏

i=1

TrZJi

l∏

j=1

Tr Z
Kj . (2.14)
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3. Vint as Das-Jevicki-Sakita hamiltonian

Although it is known how to perform the gaussian matrix integral [7], it is not so easy

to evaluate the Z-integral (2.13) in a simple form and write down the interaction vertex

Vint in terms of oscillators αn. However, we expect that Vint simplifies in some particular

limit. We propose that in the BMN limit Vint can be replaced by the Das-Jevicki-Sakita

hamiltonian V3

V3 =
∑

n,m>0

α−nα−mαn+m + α−n−mαnαm. (3.1)

This is motivated by the intuition that string interaction can be written as the split-

ting/joining and the length of strings is conserved in the BMN limit (see figure 2). This

vertex can be thought of as the lightcone string field interaction in the 1/2 BPS sector of

N = 4 SYM.

The important property of DJS hamilto-

n+m

m

n

1/N

Figure 2: This diagram represents the split-

ting and joining of strings. In this process the

U(1)J charge, or the total length of strings is

conserved. This diagram comes with a factor of

Nχ = N−1.

nian V3 is that it is diagonal in the fermion

basis (i.e. V3 is a W -current)

V3 =
∑

r

r2c−rbr. (3.2)

We can easily see that V3 measures the

square of the mode number of fermions

[V3, cr] = r2cr, [V3, br] = −r2br. (3.3)

In particular, V3 is diagonal in the rep-

resentation basis and its eigenvalue is given by the second Casimir

〈R|e
1

2N
V3|R′〉 = e

1

2N
C2(R)δR,R′ . (3.4)

To compute the two-point function of states given by the boson basis, we have to

rewrite them in terms of the fermions:

k∏

i=1

α−Ji
|0〉 =

∑

S⊂{1,···,k}

(−1)|S|+1
∑

0<r<JS

c−J+rb−r|0〉 +

+
1

2

∑

A∪B={1,···,k}

∑

S⊂A

∑

T⊂B

(−1)|S|+|T |
∑

0<r<JS

∑

0<s<JT

c−JA+rb−rc−JB+sb−s|0〉 +

+ · · · (3.5)

where |S| denotes the number of elements in S, and JS =
∑

i∈S Ji. The first line in (3.5) is

the state with one particle-hole pair, and the second line is the state with two particle-hole

pairs. The dots denote the higher particle-hole pair states.

Below, we check our proposal (3.1) for two examples.
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3.1 Example 1: the 1 → k amplitude

Let us consider the process that a single trace operator splits into an operator with k traces,

i.e. the amplitude G{J}{Ji}. We would like to show that this amplitude is written by using

the DJS hamiltonian V3 in the free fermion picture

〈0|αJe
1

2N
V3

k∏

i=1

α−Ji
|0〉 =

∑

S⊂{1,···,k}

(−1)|S|+1
∑

0<r<JS

exp

[
1

2N

(
(J − r)2 − r2

)]
. (3.6)

Note that in this process only a one particle-hole pair contributes. Therefore, we used

the first line in (3.5) to rewrite the amplitude in terms of the free fermions. On the right

hand side of (3.6), we used the relation (3.3). In the BMN limit, the summation over r is

replaced by the integral over x = r/J

〈0|αJe
1

2N
V3

k∏

i=1

α−Ji
|0〉 '

∑

S⊂{1,···,k}

(−1)|S|+1J

∫ JS/J

0
dx exp

[
J2

2N
(1 − 2x)

]

=
N

J

∑

S⊂{1,···,k}

(−1)|S| exp

[
J

2N
(JS − JS)

]

=
N

J

k∏

i=1

[
exp

(
JJi

2N

)
− exp

(
−

JJi

2N

)]
. (3.7)

Here S = {1, · · · , k} − S is the complement of S. In the second equality, we used the

relation
∑

S(−1)|S| = 0. Finally, the BMN limit of this amplitude is given by

lim
N,J→∞, J2

N
=g2

〈0|αJe
1

2N
V3

k∏

i=1

α−Ji
|0〉 =

J

g2

k∏

i=1

2 sinh
(g2

2
Ĵi

)
(3.8)

where Ĵi = Ji/J .

On the other hand, the corresponding matrix integral is known at finite N [4, 5, 8 –

10]–,BergereAZ

∫
[dZdZ]e−Tr(ZZ) Tr Z

J
k∏

i=1

Tr ZJi =
1

J + 1

∑

S⊂{1,···,k}

(−1)|S|
Γ(N + JS̄ + 1)

Γ(N − JS)
(3.9)

In the BMN limit (3.9) becomes

lim
N,J→∞, J2

N
=g2

∫
[dZdZ]e−Tr(ZZ) Tr Z

J
k∏

i=1

Tr ZJi =
JNJ

g2

k∏

i=1

2 sinh
(g2

2
Ĵi

)
. (3.10)

From (3.8) and (3.10), one can see that the DJS hamiltonian correctly reproduces

the matrix integral up to an overall factor NJ . The factor NJ can be taken care of by

modifying the identification as

e
1

2N
Vint ' NL0e

1

2N
V3. (3.11)
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3.2 Example 2: the 2 → 2 amplitude

Next example is the 2 → 2 amplitude G{J1,J2}{K1,K2}. The free fermion computation is

straightforward as in example 1. In this case, both one particle-hole pair and two particle-

hole pairs contribute to the amplitude. So we need the first and the second line (3.5) to

rewrite the bosons into fermions. Explicitly, the two-boson state is written in terms of

fermions as

α−K1
α−K2

|0〉 =




∑

0<r<K1

+
∑

0<r<K2

−
∑

0<r<J



 c−J+rb−r|0〉 +

+
∑

0<r<K1

∑

0<s<K2

c−K1+rb−rc−K2+sb−s|0〉. (3.12)

After a similar calculation as in example 1, the BMN limit of the 2 → 2 amplitude is

found to be

lim
N,J→∞, J2

N
=g2

〈0|αJ1
αJ2

e
1

2N
V3α−K1

α−K2
|0〉 =

=
J

g2
23 sinh

(g2

2
Ĵ1

)
sinh

(g2

2
Ĵ2K̂1

)
sinh

(g2

2
Ĵ2K̂2

)
. (3.13)

Here we assumed that J2 = max{Ji,Kj}, J1 = min{Ji,Kj}.

On the other hand, the BMN limit of the matrix integral is [10]

lim
N,J→∞, J2

N
=g2

∫
[dZdZ]e−Tr(ZZ) Tr Z

J1 Tr Z
J2 Tr ZK1 Tr ZK2 =

=
JNJ

g2
23 sinh

(g2

2
Ĵ1

)
sinh

(g2

2
Ĵ2K̂1

)
sinh

(g2

2
Ĵ2K̂2

)
. (3.14)

Again, the two computations (3.13) and (3.14) agree up to a factor NJ .

4. Discussion

We have checked for two examples that Vint defined in (2.13) can be replaced by the

DJS hamiltonian V3 (3.1) in the BMN limit. This agreement strongly suggests that the

identification (3.11) holds for the general correlator G{Ji}{Kj} (1.3). It would be nice to

find a general proof. In [12], a similar interaction vertex Σ was introduced in the string

bit picture, and it was shown that it reproduces the correct g2 dependence. It would be

interesting to relate their vertex Σ and ours V3. It is well-known that the DJS hamiltonian

naturally appears in the two-dimensional Yang-Mills theory [13, 14]. It would be interesting

to find its relation to the BMN limit of 1/2 BPS sector (see [8] for a discussion on the relation

of 1/2 BPS correlators and 2d Yang-Mills). Finally, it would be extremely interesting to

find a useful description of the 1/4 and 1/8 BPS states (see [15, 16] for some attempts).
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